Intelligent manufacturing/production systems: Modeling, algorithms, and optimization
نویسندگان
چکیده
منابع مشابه
Novel models and algorithms for systems reliability modeling and optimization
...................................................................................................................................... 124 Autobiographical Statement ........................................................................................................ 126
متن کاملIntelligent Control Systems and Optimization
d u e. T h e h ig h e n te rp ri se s’ p er fo rm an ce i s d u e to t h e es ta b li sh m en t o f p re ci se o b je ct iv es f o r a d et er m in ed co n fi g u ra ti o n o f th e n et w o rk . T h e v ir tu al en te rp ri se , co m p o se d in th is w ay fo ll o w s a se t o f p ro d u ct io n a g re em en ts , in o rd er t o fu lf il o b je ct iv es b y t ry in g t o d im in is h t h e p ro...
متن کاملFractured Reservoirs History Matching based on Proxy Model and Intelligent Optimization Algorithms
In this paper, a new robust approach based on Least Square Support Vector Machine (LSSVM) as a proxy model is used for an automatic fractured reservoir history matching. The proxy model is made to model the history match objective function (mismatch values) based on the history data of the field. This model is then used to minimize the objective function through Particle Swarm Optimization (...
متن کاملAnt colony optimization-based hybrid intelligent algorithms
Ant colony optimization algorithm is a heuristic approach for the solution of combinatorial optimization problems. In order to solve continuous optimization models, an ant colony optimization algorithm is designed. Based on this algorithm, two hybrid intelligent algorithms combined with fuzzy simulation and neural network or integral sum approximation are introduced for solving fuzzy expected v...
متن کاملHemingway: Modeling Distributed Optimization Algorithms
Distributed optimization algorithms are widely used in many industrial machine learning applications. However choosing the appropriate algorithm and cluster size is often difficult for users as the performance and convergence rate of optimization algorithms vary with the size of the cluster. In this paper we make the case for an ML-optimizer that can select the appropriate algorithm and cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mechanical Engineering
سال: 2018
ISSN: 1687-8140,1687-8140
DOI: 10.1177/1687814018819508